Articles tagged "psd analysis"

公司

WipWare Proudly Celebrates Over 30 Years of Innovation

From a dusty DOS computer to AI-powered, real-time fragmentation analysis systems… WipWare has been at the forefront of fragmentation analysis for over 30 years of innovation, transforming how the world measures particle size.

The Beginning

From humble beginnings to global impact, we’ve come a long way. This year, we’re celebrating over 30 years of innovation in fragmentation analysis. Along the way, we’re taking a look back at the milestones. These milestones shaped us and the journey of making particle size analysis smarter, faster, and easier than ever.

Before WipWare was WipWare, our founder 汤姆·帕拉吉奥 was in the field with North Bay DuPont. He was tackling real-world challenges with innovative thinking and a practical mindset.

Below is a photo of Tom from our archives. He was working on a project that would spark the idea for our very first product in fragmentation analysis: WipFrag.

Tom Palangio with a hard hat on standing with cameras by a muckpile of rocks. Mining innovation

Solving a Global Problem

Traditionally, describing blast results in mines and quarries was limited to vague terms like “good,” “fair,” or “poor.” Manual sieving and particle counting were too costly and impractical until a team of passionate pioneers changed the game.

WipFrag was born in 1986 from groundbreaking collaboration between Franklin Geotechnical, DuPont/ETI, and the University of Waterloo. It was the world’s first digital image analysis software for measuring rock fragmentation.

Three images of rocks from a muckpile, one with a measuring tape, 4th image is the particle size distribution curve from first versoion of WipFrag

Leveraging advancements in imaging and computer processing, they created a revolutionary tool. A digital method to analyze muckpile photos or video frames to produce a detailed fragmentation size distribution curve.

The name itself carries the legacy: Waterloo Image Enhancement Process for Fragmentation or “WIEP,” later shortened to just “WipFrag.”

Since then, our journey has been marked by bold ideas, hard-earned field experience, and a commitment to excellence that has brought us to where we are today. 汤姆·帕拉吉奥, with his explosive expertise, innovative leadership, and close collaboration with Dr. Norbert Maerz and Dr. John Franklin laid the groundwork for much of what we now take for granted in automated material analysis.

First Trials

Thanks to real-world testing in 1980s-1990s at INCO’s Copper Cliff and Coleman underground operations and Highland Valley Copper in BC, WipFrag proved its worth boosting productivity, reducing oversize, and optimizing blast patterns. Results included a 40% pattern expansion and 10% increase in mill throughput milestones that cemented WipFrag’s value in the mining industry.

We owe this innovation to the visionaries who asked, “What if we could measure fragmentation automatically?” and then made it possible. Hats off to the original developers and researchers whose dedication paved the way for what WipWare is today, 30 years strong and still leading the future of photoanalysis technology.

WipJoint and System 1

In 1990, WipJoint was introduced for measuring in-situ rock apparent block size and joint orientation.

Our journey into real-time automated analysis systems began in 1998, led by Thomas W. Palangio, the founder’s son, as he joined the company and introduced our first hardware systems. System 1 was released in 1998 with one camera for online analysis: a well-received innovation for the mining industry. The very next year, System 2 was rolled out, boasting the capacity to integrate 12 cameras for real-time analysis.

Then another year later in 2000, WipFrag 2 was developed, building on the success of the first WipFrag.

WipWware Team showing very first Solo system

In this 2007 photo, WipWare team members gather around the first Solo system — a major step forward in automated material analysis. Originally built for conveyor belts and later adapted for vehicle loads, this early unit was the seed of what would become today’s Solo 6Reflex 6 systems — smarter, faster, and tougher than ever.

Pictured here are two faces still leading WipWare forward today:

WipFrag 3 joined the arsenal in 2014 with drone and GIS capabilities, serving as HMI for our real-time analysis systems. With WipFrag now in the palm of your hand since 2016, WipWare makes it easier than ever for field personnel to assess blast fragmentation instantly, anywhere, anytime and share it across platforms for end-to-end mine-to-mill optimization.

WipFrag Goes Mobile

In 2016, WipWare brought WipFrag to mobile devices — putting fragmentation analysis directly into the hands of field personnel.

For the first time, users could capture and process muckpile images using the camera on their phone or tablet, with the option to sync and share results across devices for further analysis.
This leap in accessibility made data collection faster, easier, and more flexible — using tools people already carried with them.
Designed for the real world — and it redefined the standard.

Pit to Plant Fragmentation Analysis

In 2018 Tom Palangio, President of WipWare enjoyed an interview with 官s伙伴 at the CIM in Vancouver. During this interview, Tom discussed how innovation, being a disruptor in the early years and providing excellent leadership has shaped WipWare into the company it is today.

WipFrag 4 Released in 2020

In 2020, WipFrag became easier than ever for field personnel to assess blast fragmentation instantly, anywhere, anytime and share it across platforms for end-to-end mine-to-mill optimization.

muckpile 的 WipFrag iOS 用户

Fast forward to today, under the technical direction of 托马斯·帕拉吉奥 (CTO), the company continues to redefine industry standards. His creativity, technical drive, and future-forward thinking have powered the evolution of Solo, Reflex, and WipFrag, now enhanced with Deep Learning Edge Detection for unparalleled accuracy across all environments.

From a garage in Bonfield, to a global leader in real-time fragmentation analysis – 30 years of innovation and engineering smarter solutions for the world’s toughest industries.

Since 1995, we’ve been shaping the future of mining technology with groundbreaking tools like WipFrag, Solo, and Reflex. Along the way, we’ve helped change how the industry collects and understands data. Today, we’re using edge-powered, AI-driven systems on conveyors and vehicles, even underground.

WipWare continues to provide the industry with powerful tools to help companies monitor, measure and manage their materials the smart way. Our state-of-the-art arsenal of analyzers measure particle size, shape, volume and colour data in real-time on conveyor belts and vehicles. Our comprehensive software is useful anywhere to instantly determine particle size and shape distribution without using a scale object.

Always Evolving, Always Innovating

But we’re not done — today our tools continue to evolve.

We’re enhancing the way our systems capture material composition and volume — bringing deeper insights to operations of every size. Plus, we’re refining how data becomes decision-making power. And now we’re working to bring that same clarity everywhere from underground to outer space.

Thank you to our technical team, whose work ensures every system and line of code is field-ready and rock solid.

Thank you to the innovators whose commitment, structure, and continuity make every innovation sustainable and scalable!

And most importantly, to our clients, resellers, and partners around the world — thank you for 30 incredible years. Here’s to what’s next. YOU are the reason our WipWare Team continues to push boundaries. Your trust, feedback, and collaboration fuel the team purpose. Whether you’re analyzing underground ore, surface muckpiles, aerial drone images, conveyor material, or vehicle loads, your success is our mission.

Here’s to 30 years of innovation, reliability, and excellence… And to the next decades of digital transformation in mining and material handling.

北安大略矿业展 North Bay & District Chamber of Commerce CIM/ICM Northern Gateway Branch 矿山连接

反射

WipWare Photoanalysis System FAQs

WipWare Photoanalysis logo, black background, FAQ with question marks in the center

We’ve put together some photoanalysis systems FAQs based on questions from our customers.

Does WipWare Technology give Real Time analysis results?

WipWare Image Analysis Systems produce real-time 24/7 results that allow personnel to identify, evaluate, and optimize troublesome areas of their process while maintaining production.
Our systems are installed in many different applications around the world. These applications vary from analyzing wood chips to detecting oversize material or contamination in diamond mines. The applications are endless.
From Mine to Mill
The term Mine to Mill highlights the importance of fragmentation data on both the blasting and processing end of operations. This term applies well to WipWare line of products from the muckpile after a blast to analyzing material on the conveyor.
Mine-to-mill technology takes the entire system into account, from the blasting process to the comminution circuit. This optimization provides a complete fragmentation and size reduction solution to maximize benefit.
WipFrag图像分析软件
WipWare’s WipFrag 4 Image Analysis Software effectively analyzes data from a recent blast and produces results of the blast material on-site in minutes.Man holding iPad tablet at rock face
反射车分析系统
From there, as the trucks haul the material to the primary crusher, you can detect oversize material or contamination and divert the material accordingly.Truck going under an arch on a sandy gravel road
Once at the primary crusher, our Reflex systems can detect oversize material, contamination or give full particle size distribution analysis as the material is dumped.
梭式输送机分析系统
After the material has gone through this process our systems can continue to analyze the material on the conveyor belt.

At this stage, you can determine what is the most important information you want to retrieve: detect oversize, divert material, identify contaminated material or receive full Particle Size Distribution data 24/7 in real-time.

Now, here’s the cool part: our WipFrag software is also the HMI (Human to Machine Interface) for our systems. Not only can you use our software separately to analyze your blast material, but the same software is also used to analyze your material all along its journey from Mine to Mill.


What are the benefits of WipWare products? 

Many potential customers ask this very question about the benefits of WipWare products. Well, here’s the answer.
WipWare offers industry-leading photoanalysis technology for accurate, real-time fragmentation assessment, optimizing blasting, crushing, and grinding operations. With features like deep learning, auto-scaling, GIS compatibility, and orthomosaic analysis, WipWare ensures precise measurement and continuous improvement. The software’s specification envelope, histogram reporting, and boulder counting enhance decision-making, reducing downtime and costs. Additionally, WipWare provides flexible pricing, cross-shipping warranties, and expert support, making it the top choice for efficient mining and aggregate operations.
Furthermore, our online Systems provide data to the customer 24/7 to identify troublesome areas of your process from Mine2mill.
In conclusion, our 独奏 Basic or Complete, 反射 Basic or Complete and WipFrag software can drastically lower energy, and maintenance costs, as-well as cut equipment downtime and aid in quality control.

WipWare 的体积功能如何工作,它如何为您省钱?

WipWare 使用精确的皮带深度检测激光器来检测两者
A) 空腰带,与之前的 Solo 型号一样
B) 输送带上物料的深度
When you tie the material depth information with the conveyor belt speed and your belt weightometer reading, you are able to extract the specific gravity of the material passing. Having the specific gravity information will allow you to determine whether the material passing is waste or ore-bearing material. 
在石灰石作业的初步测试中,WipWare 能够在体积计算和皮带重量计读数之间达到 94% 相关性。
操作可以使用这些信息来转移进入破碎过程的废料,从而节省大量的维护和能源成本。
Volumetrics users have the added benefit of receiving accurate particle sizing results as well as another new feature allowing you to detect contamination.
随着尺寸、形状、体积和污染检测数据实时无缝传输,WipWare 的自动化技术提供的准确数据指标是竞争对手的三倍。


What has WipWare technology been used for?

在 WipWare,我们经常将自己定位为采矿和聚合技术提供商,因为这两个行业构成了我们业务的大部分。光分析技术的美妙之处在于,通过合适的图像,我们的产品可以分析从微米材料到行星的任何事物。我们都知道自动粒度测量是采矿和骨料行业的关键部分,但正如您将看到的,材料尺寸不仅对岩石很重要。以下是我们有幸使用过的一些很酷的应用程序:
 Pebbles with a ruler to measure size in the bottom left corner
火星好奇号: There may not be any mining on Mars (that we know of), but the Curiosity rover is taking pictures that are being analyzed for oversized obstacle detection. What a great way to identify and steer clear of obstacles and keep Curiosity roaming.
炒鸡蛋。 That’s right, I said scrambled eggs. A food supplier from the US contacted us looking to optimize the fluffiness and fragmentation of the scrambled eggs they use. I’ll never look at scrambled eggs the same way ever again.
加工金伯利岩: Getting out of our chef’s apron and putting our hard hats back on, we have been working very closely with multiple diamond companies around the world to accurately analyze the process kimberlite material on their conveyor belts. What’s so incredible about this application? Well, it’s pretty normal, except for the fact that the material ranges from as low as 1.2mm (0.0472440″ for our Imperial friends). Once again, if a suitable image can be captured, WipWare can analyze it.
…And of course, we work with hundreds of applications that deal with broken screen detections, contamination, quality control procedures, pre- and post- crusher optimization and SAG mill throughput applications.


How can I see analysis (the) data?

Both Delta (Solo 6 and Reflex 6) and WipFrag produce a percentage passing curve visible after each virtual sieve analysis. It also saves the data to a CSV (comma-separated values) file. Each sieve analysis produces a new line in the CSV file that represents the results from the sieve.
此 CSV 文件包含:
– Timestamp (Year/Month/Day/Hour/Minute/Second)
– D-values (XX% passed the specified size – Ex. 90% of the material passes 13.87 inches[352.30mm])
– User specified size classes (% passing or retained at the specified size)
– Block (amount of particle detected)
– Min, Max, Mean, St. Dev, Mode
– Sphericity (The shape of the material – 0=Linear Objects 1=Perfectly Round)
– Coverage (How much of the image is used)
– Calibration Values (b, Xmax, X50, Xc and n)
– EDP values (Edge Detection Values)
– Calibration factors
– System info (CPU temp, Board temp, Voltage checks)
– System uptime
– Camera setting at the time of the image.
– Modbus and OPC poll rate
– Vehicle Identification Information (Reflex Only)
Delta (Solo 6 and Reflex 6) can e-mail these CSV files automatically as well as an average of the entire day on one passing curve. It also has a trending graph in the lower section of the software interface which trends the data for the current day.
此外,Delta 能够使用 Modbus 或 OPC 连接输出分析信息,将信息传递给您的历史数据库、PLC 或 HMI。Chart with rocks on the left, chart on the right, System analysis at the bottom


WipWare 光分析系统需要哪些定期维护?

我们系统所需的唯一定期维护是确保镜头和灯清洁,尽可能少灰尘/污垢。
系统需要清洁的频率取决于其运行环境:
环境/频率 
多尘 1-3 周
中等灰尘 2-6 周
4-8 周很少或没有灰尘
方法一:水管 
The first method is the most common. Using a water hose, simply spray down the system ensuring the lens is clean and free of any noticeable dust or dirt. If possible, use a squeegee to remove any droplets that may remain on the lens. Doing this helps prevent dust from collecting in the droplets that remain which could leave deposits on the lens that interfere with image capture. Since our systems are completely waterproof this method is usually the easiest and most effective way to clean the lens. It can also be done without having to shut down the conveyor belt.
方法2:清洁湿布/纸巾 
另一种选择是使用干净的湿布或纸巾蘸水或 Windex。使用干净的超细纤维布将是理想的选择,但在矿场可能很难找到。擦拭镜头时尽量不要用力按压,如果用力过大,积聚的灰尘可能会在镜头上留下划痕。注意:在低于零温度的情况下,不要使用水或 Windex,因为它们会冻结到镜头上并导致图像质量不足。我们建议使用额定温度低于零的标准挡风玻璃清洗器。
方法三:压缩空气 
It’s also acceptable to use compressed air from a can or hose to dust off our systems. This method works well but will kick up a lot more dust than the liquid methods. We recommend using a dust mask when using compressed air to clean off out systems.


Can Delta (Solo 6 and Reflex 6) store the images captured by automated systems?

简单的答案是肯定的。
The computer can store up to 1000MB worth of images without any issues. Once beyond this point the hard drive could start having problems accessing the image folder causing the computer to run slower than normal, so the oldest images are overwritten automatically.
注意:所有粒度数据都保存在一个 CSV 文件中,该文件的大小要小得多,并且允许您在更长的时间内存储数据。
我们的大多数系统都使用 1.2MP 摄像头,每个图像平均 180KB,因此 1000MB 的存储空间可以容纳大约 5600 张图像。
Running 24 hours per day the system can roughly save the following number of images:
如果您每 20 秒拍摄 1 张图像,则每天将有 4,320 张图像。 ~31.2 小时
如果您每 20 秒拍摄 2 张图像,则每天将有 8,640 张图像。 ~15.5 小时
如果您每 20 秒拍摄 3 张图像,则每天将有 12,960 张图像。 ~10.3 小时


When should I apply Calibration to my analysis?

To calibrate, or not to calibrate; that is the question. And it’s an important question to ask prior to installing your online bulk material analysis system, regardless of the industry you’re in. Let’s help you figure out why calibration may or may not be your best bet, and whether you will see value in calibrating your system.
基于图像的岩石碎裂分析技术的缺陷之一是无法分析在传送带上运行的底层材料。因此,在正常情况下,如果没有校准,在使用图像分析时,精细材料的代表性通常不足。对于爆炸碎片分析也可以说同样的事情,但我将在本文稍后部分谈到这一点。
如果照片分析技术代表顶层材料,而代表底层材料不足,则操作可以通过校准来弥补这一缺陷。 (有关校准的操作指南,请查看此链接)。
The way I see it, without sounding too much like a broken record, calibrated photo analysis technologies take the best of both worlds: Quantity and quality.
Take the following scenario as an example: Company ABC wants to adjust the SAG feed based on particle size analysis. By doing so, they need to know when to draw fine material from the stockpile and when to draw coarser material. Calibration allows for the proper “mix” of bulk material in order to optimize the process.
The Swebrec and Rosin-Rammler functions are great for adjusting the distribution curve to accurately compensate for fine material… But what if you are looking strictly at the coarse sizes, say, for oversize detection?
If this is the case, you may want to reconsider the calibration process.
Allow me to explain:
A calibrated system is making certain assumptions about material underneath the top layer and may even bias your coarse material fractions when trying to adjust the distribution curve. So, if you are planning on having a conveyor belt shut down if it detects material over x size, you may want to reconsider taking the chance of biasing your results. Instead, an uncalibrated system is going to get you very useful data that will allow you to stop/start/act on out-of-spec readings and optimize your process.
What are other reasons why clients don’t calibrate?
当材料太大时,手动采样材料会困难得多,这可能会导致成本过高。这个问题最常出现在应用的爆破端,其中爆破优化在很大程度上依赖于检测材料尺寸的相对变化。
对于破碎机后分析,一些客户通过材料尺寸的相对增加来检测衬板磨损,因此无需校准。
总之,校准在采矿和骨料行业肯定有其用途,更具体地说,当更细的材料尺寸是困境的必要部分时;然而,未经校准的系统在优化过程和跟踪相对变化方面仍然非常有用。


What is WipWare’s warranty policy?

WipWare Inc. provides a one-year limited warranty on all products, including components and software. To offer customers peace of mind, WipWare also offers an annual service contract, which includes exclusive technician service rates, monthly check-ins, extended system warranties, and more.
With the purchase of any WipWare photoanalysis product, the warranty covers cross-shipping for any defective product under the WipWare Limited Warranty, ensuring minimal downtime for customers.
有关完整的 WipWare 有限保修详情,请参阅 这里.


WipWare 如何促进对其独特产品的培训?

WipWare goes above and beyond to ensure that not only customers, but any individual or company who may show interest in a WipWare product has the utmost training and confidence when it comes to utilizing our extensive line of photoanalysis systems. WipWare offers free training to individuals, companies, colleges, and universities interested in learning about our products. We recently conducted on-campus workshops for mining students at Queen’s University (Kingston), Laurentian University (Sudbury), and ÉTS University (Montreal). In addition to in-person sessions, we provide virtual training and have a library of training videos available for easy access.Mining students in photo learning WipFrag
For more information about WipWare training please contact support@wipware.com

For more information about our systems, please visit our YouTube channel.

WipFrag

WipFrag 4 FAQ!

We’ve put together some FAQs for WipFrag 4 image acquisition based on questions from our customers.

我已经购买了 WipFrag 软件,但对如何正确获取要与该软件一起使用的照片有一些疑问?

For accurate fragmentation analysis with WipFrag, follow these key guidelines when capturing images:
Proper Scaling – Use a scale object (e.g., a known-sized object) in each image to ensure accurate measurements unless using auto-scaling.
Good Lighting – Avoid shadows and overexposed areas to maintain clear rock particle visibility.
Correct Angle & Distance –Stand at any distance where the biggest particle occupies 20% of the image.
Sufficient Coverage – Capture multiple images to represent the entire fragmentation distribution, avoiding overly distant shots. WipFrag has the merging feature to help combine all the images in a single result.
High Resolution – Use a good-quality camera to ensure sharp images with clear particle edges.
The expert photographers and software designers here at WipWare have put together a helpful and insightful document correctively named “The Sampling and Analysis Guide”.
This document is available in the Products and Services section of the WipWare website (download here: https://wipware.com/wp-content/uploads/2021/06/Sampling-and-Analysis-Guide-2021.pdf)


什么时候拍摄户外素材的最佳时间?

Avoid capturing images early in the morning or late in the evening, as the low sun creates long shadows around particles, particularly oversized ones. This can make it difficult to identify an EDP and increase manual editing time.
For optimal results, take images late in the morning or early in the afternoon, especially on overcast days. The even lighting during these times produces soft, uniform shadows, making EDP detection easier and significantly reducing the need for manual adjustments.


What is False positive in Image analysis?

A false positive occurs when your analysis contains either a fusion or disintegration error. A fusion error happens when two or more particles are mistakenly merged into one, while a disintegration error occurs when a single particle is incorrectly fragmented into multiple pieces.


What is the recommended way to manually edit analysis on WipFrag?

We recommend that you first use the deep learning EDP.
To improve the particle delineation, activate the edit assist tool, to show you the 50 biggest particles.
1、当您发现解体错误时,您有两种选择:
a. Use the ‘Lasso Delete & Outline’ tool (Tool No. 5) to trace around the entire particle. This tool will delete any net within the shape you drew and will draw net along the line you traced.
b. Use the ‘Block Delete’ tool to quickly delete unnecessary net without deleting the net that is correctly surrounding the particle. This can usually be faster than tracing the entire particle using ‘Lasso Delete & Outline’.
Rocks showing edge detection
c. When you find a fusion error, use the ‘Free Draw’ tool to draw a line along missing edges.
Simply repeat the above until satisfied.


WipWare 如何促进对其独特产品的培训?

WipWare goes above and beyond to ensure that not only customers, but any individual or company who may show interest in a WipWare product has the utmost training and confidence when it comes to utilizing our extensive line of photoanalysis systems. WipWare offers free training to individuals, companies, colleges, and universities interested in learning about our products. We recently conducted on-campus workshops for mining students at Queen’s University (Kingston), Laurentian University (Sudbury), and ÉTS University (Montreal). In addition to in-person sessions, we provide virtual training and have a library of training videos available for easy access.Mining students in photo learning WipFrag
For more information about WipWare training please contact support@wipware.com


Can WipFrag 4 be used for simple Drill and Blast simulation?

Yes. WipFrag 4 has a module called BlastCast using KCO model for simulation of blast parameters. This model used both controllable and uncontrollable parameters to predict PSD.

The easiest way to obtain particle size distribution data from a photograph is to download WipFrag 4 on your mobile device. Simply open the app, capture an image of the material, analyze it using WipFrag’s advanced processing tools, and receive accurate size distribution results within minutes.


How can I analysis large blasting with WipFrag 4?

There are two methods for analyzing large blasts using WipFrag 4. The first method involves using drone images, where the software generates an orthomosaic from UAV-captured images. orthomosaic image of blasted rock with generated blue net around the particles
The second method allows you to capture multiple images and merge them within WipFrag 4, providing an average result across all images for a comprehensive analysis.


Can I compare multiple blast results on WipFrag 4?

Yes, select all blast images in the WipFrag workspace, click the three dots in the upper corner, and choose “Merge and View Chart” to display the PSD. The software will present all blast PSDs on a single chart for easy comparison.

For more information about WipFrag, please visit our YouTube channel. Tutorial videos are available on a variety of WipFrag topics.

zh_CNZH